Learn to Load the Dishwasher

Changxi Zheng
Cornell University, cxzheng @cs.cornell.edu

Abstract— We develop an algorithm to enable a per-
sonal robot to conduct one of the common tasks in our
daily life — moving the objects to a specific place. One
typical application scenario of this algorithm is to load a
variety of Kitchen items such as the plates, mugs, and
bowls etc. into a dishwasher. For newly seen objects
and their destination container (e.g. the dishwahser), our
algorithm features a supervised learning procedure to
decide both the position to grasp the objects and the loca-
tions to place them. The input of the algorithm includes
the image captured by a camera and the point cloud
data collected by a depth sensor. A few placing positions
and the corresponding object’s placing orientations are
selected by the trained SVM. Finally our method runs
the point-based rigid-body simulation for each of the
position/orientation candidates to pick the best placing
strategy and proposes an placing order if multiple objects
are considered.

I. INTRODUCTION

The use of robot is constantly getting improved
in recent years to help human beings conduct
different kinds of laborious tasks, ranging from
assemble complex machinery to balancing a spin-
ning top on the edge of sword [1]. However,
most of the robots are programmed or “scripted”
for very specific circumstances, such as moving
a particular shape of object at particular location
to a particular destination. They may run afoul of
the tasks or make fatal mistakes if their working
context changes. For example, placing the robot
in a different environment might fail its jobs.
Unfortunately, for personal robot, the uncertainty
about the environment is almost inevitable. For
instance, consider a personal robot designed for
cleaning up the kitchen. It is hard, if not impos-
sible, for the robot to know the layout of the
kitchen a priori. Therefore, a versatile personal
robot usually requires the learning ability to adapt
itself to different unpredictable working situations.

In this project, we focus on developing a learn-
ing algorithm for a personal robot to move a

x /L - '/ ./
Fig. 1: Load the dishwasher using the robot arm

variety of objects to specific places. One typical
application scenario is to load different shapes
of kitchen items such as the plates, mugs, wine
glasses and bowls etc. into a dishwasher. Our
algorithm does not require the knowledge about
the moved objects (e.g. the kitchen items) or the
destination place (e.g. the dishwasher). Instead, it
features a supervised learning algorithm to decide
both the grasping position on the objects and the
placing locations. The selected moving strategies
are finally validated using a point-based rigid-body
simulation before applying to the robot’s arm.

To perceive the geometries of both the moved
objects and placing destination, our algorithm
combines the inputs from a camera and a depth
sensor both mounted on the robot. The camera
provides captured images for the moved objects
(See figure (2.a)). With these images, the grasping
points of the objects can be determined using
the algorithm proposed in the previous work [2].
The depth sensor collects a “point cloud” data
corresponding to the 3D locations that it has found
on the front unoccluded surfaces of the objects

.....

(a) Example of camera captured image

(b) Example of 3D point cloud data

Fig. 2: The example of input data

(See figure (2.b)). Such point clouds are typically
incomplete to represent the whole geometry. In
order to obtain enough point cloud data, the robot
needs scan the object from different view points
and employ the registration algorithm such as the
Iterative Closest Point (ICP) [3], [4], [5] method
to align all the input point clouds.

We use the SVM to suggest a loading strategy,
which is described by the placing point on the
destination place and the placing orientation of the
manipulated object. The placing point is defined as
a point where the robot is trying to touch with the
grasped object. The placing orientation specifies
the orientation of the object when it touches the
placing point. Once a moving strategy is speci-
fied, the robot can move the object to the pacing
point with the given object orientation using any
path planning algorithm. After that, the object is
released by the robot, experiencing some possible
rigid motion due to the gravity or the collisions
with the other objects, and finally resting on some
place.

Before realizing the proposed moving strategy
by the robot, it checks the its feasibility using a
rigid body simulation. This could avoid some fatal
mistakes (e.g. breaking the dinner plate when load-
ing it into the dishwasher) due to an inappropriate
loading decision. However, reconstructing the full
3D models for rigid body simulation is expensive
and not robust due to the incompleteness and the
noise of the input information. To circumvent this

difficulty, we notice that if some place is suitable
for holding the object, it is also very likely to be
able to hold another geometrically similar object.
If the geometric model of the later object is easy
to achieve, it can serve as a fitness checker for the
original object to test whether or not a particular
position is adequate to hold it. Therefore, we first
create a database of different shapes of potentially
manipulated objects. Our algorithm will match the
input geometry with the similar object from the
database. For example, in our loading-dishwasher
example, the grasped kitchen items are represented
by a similar object from a database of kitchen
items for which we know the exact 3D model. And
that 3D model is used for later fitness checking as
well as generating the training examples. We will
describe all those details in section 1V.

II. RELATED WORK

While there are plenty of previous work about
robot manipulation, many of them assumes avail-
ability of the 3D model of the manipulated objects.
A general survey about this topic can be found
in [6], [7]. If the desired location of grasp is
available, techniques such as visual servoing that
align the gripper to the desired location [8] or
haptic feedback [9] can be used to pick up the
object. If no grasping point is given, some learning
algorithm could be useful to select it. For 2D
object, [10], [11] proposed an algorithm to select
a 2D position for three-fingered grasps of planar
objects. [12] showed that there is a dissociation

between recognizing objects and grasping them,
1.e., there are seperated neural pathways that rec-
ognize objects and that direct spatial control to
reach and grasp the object. For 3D object grasping,
many of the previous work focus on inferring
useful information about objects without 3D model
available. [13], [14] showed that given just a single
image, it could be possible to extract the (partial)
3D structure of a scene. Later in [2], Saxena
and his colleagues proposed a supervised learning
algorithm to determine the grasping point from
captured images. Utilizing both the camera cap-
tured images and point clouds from depth sensor
was realized in [15].

III. ROBOT

The algorithm can be performed on the robot
with an arm and other equipment such as cameras,
depth sensor and computers. The robot arm could
be a position-controlled 5-dof or 7-dof arm with
a three-fingered gripper. The depth sensor could
be the SwissRanger camera which returns a 144 x
176 array of depth estimates, the Bumblebee stereo
camera with 640 x 480 array of depth information
or a Laser scanner.

IV. ALGORITHM

In this section, we describe the algorithm details
that we have proposed or implemented. We post-
pone the discussion of the algorithm for the open
problems until section VI.

A. Perceive the Geometries

Robot needs to recognize the objects and the
container using its vision system. We use the depth
sensor to collect the point cloud data representing
the objects. Since the point cloud collected from
a single sensor scanning is incomplete to recover
the full geometry, we need to scan the object
from different view points. Therefore an registra-
tion algorithm is necessary to align all the input
point clouds. The standard point cloud registration
algorithm, ICP [3], [4], [5], can be used for this
purpose.

However, reconstructing the triangle meshes of
the objects from scanned point cloud data is hard,
if not impossible. This is because multiple objects
might occlude with each other such that there is
no way to obtain the completed point cloud data.

We propose to avoid reconstructing the triangle
meshes of the objects explicitly by pre-computing
a database of different objects and matching the
partially scanned data with the database objects to
find the closest one. For the application of loading
a dishwasher, for instance, the database consists of
the triangle meshes of different kitchen items, such
as the plates, coffee mugs, and wineglass, etc. The
scanned data for a dinner plate should have close
matching with some dinner plate in the database up
to some scale and rigid transformation. Therefore
we can use the matched object in the database to
“approximate” the scanned object.

We reuse the ICP algorithm for database match-
ing. In particular, given the partially scanned point
cloud data €2, and an object, @, from the database,
we define the distance of them as

D(Q,) = mindist(R(Q),)

where R is the affine operator (scale, rotation,
and linear translation), and dist is the sum of the
shortest distance from each point in the point cloud
to the surface.

dist(V, ®) = 3 03 (p)

piEV

where 14 is the level-set function for the object
®. The dist function can be quickly evaluated at
runtime by pre-computing the level-set field of
each database object and stored the field in the
voxelized grids. The ICP algorithm can be used
to find the D(Q, ®) iteratively. And the closest
matching of the point cloud data is the database
object which has the smallest D(, ®) value,

C(Q) = arg mcgn D(Q,)

B. Point-based Rigid-body Simulation

The destination place (e.g. the dishwasher) is
scanned and represented by the point cloud. On
the other hand, the objects are matched with the
existing 3D models in a database. We use the
most similar 3D model as a proxy of the origi-
nal object in the rigid simulation. Therefore, our
simulation involves the point cloud data represent-
ing the destination place and the triangle meshes
approximating the objects. The collision detection
can be quickly accelerated by pre-computing a

(a) For dishwasher 1

(b) For dishwasher 2

Fig. 3: Snapshots of the point-based rigid-body simulation

hierarchy of oriented bounding box. The standard
linear complementary problem (LCP) arose from
the collision events are solved using the projected
Gauss-Seidel method. We refer the reader to the
paper [16], [17], [18] for detailed introduction of
the LCP problem and rigid-body simulation.

We validate a given placing point as follows.
First, in the simulation, we set the object’s ini-
tial position is slightly higher than the placing
point. Let the object initial position and rotation
expressed as Sp. Then we start the simulation.
At each time step, we compute the kinetic en-
ergy of the object F(t,). The simulation runs
until the object is resting in the container, i.e.
|E(t,) — E(t,—1)] < 0. Let the object ending
position and rotation be .S,,. And we compute the
rigid transformation between the initial state and
the termination state, R,, i.e. S, = R,S;. We
finally validate the placing point by checking the
Frobenius norm of the rigid transformation,

HRSHF < T

Intuitively, a placing point is valid only when the
termination state deviates from the initial state in
a threshold, which means the container can hold
the object stably at that placing point.

For each placing point, we need to test placing
the object with different orientations. Currently
in our implementation, we test four orientations,
1.e. rotating the object along y-axis 0,45,90,135
degrees.

C. Train the SVM

Using the rigid simulation to validate a placing
point is expensive. However, it can be used to
generate the training examples for the supervised
learning algorithm. We use the SVM to learn
whether or not a given placing point is valid.

In particular, given an object €2 and its placing
orientation IR, we model the probability of a point
x being a valid placing point as

1
1+ efqﬁ(:z:,ﬂ,R)TG

6]

p(a’,‘|Q,R) =

where ¢(x, 2, R) returns the feature vector for the
given object at the specified orientation. The pre-
diction parameter 6 is estimated using the standard
logistic regression.

Right now, we have 36 features for a given
object placing at point with the orientation R. To
introduce these features, without loss of generality,
we first assume the destination place is lying on
the X-Z plane. We can place the objects by moving
it vertically (along Y direction). First, we compute
the bounding box B of the object and project it
onto the X-Z plane. Let B,. denote the projection.
Next, we enlarge B,. using a constant scalar. i.e.
B,. = abB,,. If the orientation of the object
changes, B,. might rotate accordingly, and so does
B,... Then we iterate all the point cloud of the
destination place, and add the points whose X-Z
coordinates are inside of B,, into the set Z. Let
Plow and Py, g, denote the lowest and highest points
in Z in Y direction. To compute the features, we
divide B,, into 3 x 3 grids, such that the center

grid is always identical to B,,. For each grid, it
has three vertical layers which spans from py,,, to
Phigh- Under this division, we have 3 x 3 x 3 grids,
denoted by g;ji, ¢,j,k = 1,2, 3.

The first 27 features are about the distribution of
the points from Z in the grids g;;;. They are simply
the ratio of the number of the points in g;;;, to the
total number of points in Z.

The next 9 features are about the hight distribu-
tion of the points in B,.. If we denote each cell
of the 3 x 3 division of B,. as b, t,7 = 1,2,3.
The feature for each b;; is the hight of the highest
point whose X-Z projection are in b;;.

To generate the training examples, we first ran-
domly select some points in the destination region,
and some orientations for the object. We run the
rigid body simulation to place the object to the
selected point with the given orientation. The sim-
ulation runs until either the object arrives its resting
state or it moves a certain distance away from the
placing point. One placing point is classified as
good if the rigid transformation of the object from
the beginning state of the simulation to the ending
state is small than a given threshold, measured
by a weighted norm of the transformation matrix.
Otherwise it is considered as bad placing point.

V. EXPERIMENTS

Our experimental application is to load the
kitchen objects into the dishwasher. We have two
different dishwashers as shown in figure 3. The
kitchen items we tested so far are a dinner plate
and a bowl.

In the preliminary experiments, we have trained
our SVM using 340 training examples generated
by random sampling. All the examples are gen-
erated in 2 hours by running the rigid-body sim-
ulation. 70% of those training examples are used
for training the SVM, which the remaining 30% of
them are used for validation. By using the features
specified in section IV, for the dinner plate, we
can achieve about 7% for the training error and
roughly 12% for the prediction error. For the bowl,
we achieve about 4.6% of the training error and 8%
of the prediction error.

In order to evaluate the quality of our SVM pre-
diction, we again use the rigid-body simulation to
validate the selected placing point from SVM, and
compute the expected number of placing points

we need to choose using SVM to find a valid
one. On the other hand, we also randomly select
the placing points and validate them using the
rigid-body simulation. For the dinner plate, the
expected number of placing point selections using
SVM is about 2.6, while the expected number of
random selection is 5.7. And for the bowl, the
expected number of placing point selection using
SVM is about 3.1, while the expected number of
random selection is 15.4. Clearly, using our SVM
prediction can largely accelerate the placing point
selection.

VI. CONCLUSION AND FUTURE WORK

In this project, we propose an algorithm to
enable a personal robot to load the objects to
some container. Both the object and the container
might not be seen a priori. Our algorithm features
a learning process to enable the robot to decide
where to put the object and what the loading
strategy is. The learning process is supervised by
the training examples that are generated using a
point-cloud-based rigid-body simulation. In order
to avoid reconstructing the triangle meshes of the
objects explicitly, we pre-compute a database of
different kinds of kitchen items and match the
partially scanned point cloud data with the objects
in the database. The most geometrically closest
object from the database is used in the simulation
and SVM prediction to decide the loading strategy.

Designing a versatile algorithm to load different
kinds of objects into different containers is a very
hard problem. There are significant challenges
remaining. Currently, perceiving of the object to
object the high quality of point cloud data is still
hard. Many of the sensors (e.g. the Swissranger
sensor) produce significant noise which makes the
database matching hard and ill-posed.

When there are multiple objects considered, not
only are the placing positions important, but also
the order of placing all the objects become tricky.
Currently, we validate the loading sequence using
the rigid-body simulation and find the feasible
one. This method is hard to scale for a large
number of objects where searching for the loading
sequence using rigid-body simulation becomes the
performance bottleneck. Searching for an optimal
and feasible loading sequence for a large set of
objects is also an interesting future work.

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(7]

(18]

REFERENCES

T. Shin-ichi and M. Aatoshi, “Living and working with
robots,” Nipponia, 2000.

A. Saxena, J. Driemeyer, and A. Y. Ng., “Robotic grasping of
novel objects using vision,” International Journal of Robotics
Research (IJRR), vol. 27, no. 2, pp. 157-173, Feb. 2008.

S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp
algorithm,” in 3DIM, 2001.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. J. Guibas, “Reg-
istration of point cloud data from a geometric optimization
perspective,” in Geometry Processing, 2004, pp. 23-32.

N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann,
“Robust global registration,” in Eurographics Symposium on
Geometry Processing, 2005.

A. Bicchi and V. Kumar, “Robotic grasping and contact: a
review,” in International Conference on Robotics and Automa-
tion (ICRA), 2000.

K. Shimoga, “Robot grasp synthesis: a survey,” International
Journal of Robotics Research (IJRR), vol. 15, pp. 230-266,
Feb. 1996.

D. Kragic and H. Christensen, “Robust visual servoing,”
International Journal of Robotics Research (IJRR), vol. 22,
pp. 923-939, 2003.

A. Petrovskaya, O. Khatib, S. Thrun, and A. Ng, “Bayesian
estimation for autonomous object manipulation based on
tactile sensors,” in International Conference on Robotics and
Automation (ICRA), 2006.

A. Morales, P. Sanz, and A. del Pobil, “Vision-based compu-
tation of three-finger grasps on unknown planer objects,” in
IEEE/RSJ Intelligent Robots and Systems Conference, 2002.
D. Bowers and R. Lumia, “Manipulation of unmodeled ob-
jects using intelligent grasping schemes,” IEEE Transactions
on Fuzzy Systems, vol. 11, no. 3, 2003.

M. A. Goodale, A. D. Milner, L. S. Jakobson, and D. P. Carey,
“A neurological dissociation between perceiving objects and
grasping them,” Nature, vol. 349, pp. 154-156, 1991.

A. Saxena, S. Chung, and A. Ng, “Learning depth from single
monocular images,” Neural Information Processing Systems
(NIPS), vol. 18, 2005.

A. Saxena, M. Sun, and A. Ng, “Learning 3-d scene structure
from a single still image,” in ICCV workshop on 3D Repre-
sentation for Recognition, 2007.

A. Saxena, L. Wong, and A. Ng, “Learning grasp strategies
with partial shape information,” AAAI, 2008.

E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw, “Cou-
pling water and smoke to thin deformable and rigid shells,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 973-981,
Aug. 2005.

D. Baraff, “Coping with friction for non-penetrating rigid
body simulation,” Computer Graphics (Proc. SIGGRAPH 91),
pp. 31-40, 1991.

D.Baraff, “Fast contact force computation for nonpenetrating
rigid bodies,” in ACM SIGGRAPH, 1994, pp. 23-34.

